CHEMICAL TRANSFORMATION OF A CEPHALOSPORIN TO A 6-EPI-1-OXACEPHEM14

C. U. Kim* and D. N. McGregor

Research Division, Bristol Laboratories Division of Bristol-Myers Company Syracuse, New York 13201 USA

(Received in USA 3 October 1977; received in UK for publication 6 December 1977)

Replacement of the sulfur atom at position 1 of the cephalosporin nucleus with oxygen showed comparable bioactivity to their natural 1-thia counterparts. 1a , 1b We describe here a very efficient chemical transformation of the dihydrothiazine ring of a cephalosporin $\underline{1}$ into the dihydrooxazine ring (6-epi-1-oxacephem) 1a $\underline{2}$.

RCONH
$$\stackrel{\text{H}}{\longrightarrow}$$
 $\stackrel{\text{H}}{\longrightarrow}$ $\stackrel{\text{RCONH}}{\longrightarrow}$ $\stackrel{\text{H}}{\longrightarrow}$ $\stackrel{\text{H}$

The reaction of the cephalosporin ester $\frac{3}{2}$ with N-chlorosuccinimide in methanol-methylene chloride (1:1) gave the 2-methoxy cephem $\frac{4}{2}$, mp 132-133° in 85% yield after recrystallization from ether. Treatment of $\frac{4}{2}$ with chlorine in carbon tetrachloride (2.5 eq, -20°, 60 min)³ followed by an aqueous work-up gave a quantitative conversion to the aldehyde $\frac{5}{2}$ as a mixture of cis and trans isomers (α chloro/ β chloro $\frac{1}{2}$ 1/9) [I.R. (KBr) 1795, 1730, 1710 and 1690 cm⁻¹; NMR (CDCl₃) of $\frac{5}{2}$ 8 2.20 (s, 3H, methyl), 4.60 (s, 2H, $\frac{4}{2}$ 0 C-7H), 5.70 (q, 1H, J=4.2, 11.5 Hz, C-7H), 6.30 (d, 1H, J=4.2Hz, C-6H), 6.8-7.5 (m, 16H), 10.4 (s, 1H, CHO); NMR (CDCl₃) of $\frac{5}{2}$ 8 2.10 (s, 3H, methyl), 4.60 (s, 2H, $\frac{4}{2}$ 0 C-7H), 5.10 (q, 1H, J=1.2, 10 Hz C-7H), 6.21 (d, 1H, J=1.2Hz, C-6H), 6.8-7.5 (m, 16H) 10.5 (s, 1H, CHO)].

Presumably the chlorinolysis includes initial S-chlorination to give the sulfenyl chloride $\underline{6}$ followed by further chlorinolysis to the dichloride $\underline{7}$ and subsequent hydrolysis to the aldehyde $\underline{5}$. In fact, intermediate $\underline{7}$ could be isolated by anhydrous work-up and quantitatively converted into the aldehyde $\underline{5}$ by contact with water. It is not clear why the thermodynamically less stable β -chloro isomer $\underline{5b}$ is predominant in the reaction mixture.

The reaction of the isomeric mixture $\underline{5}$ with AgBF4-Ag $_2$ 0 (1:1) ^{1a} in methylene chloride gave the oxazolone $\underline{8}$ in 85% yield [I.R. (KBr) 1780, 1720 and 1680 cm ⁻¹; NMR (CDCl $_3$) δ 2.10 (s, 3H, methyl) 4.81 (broad s, 2H, Φ OCH $_2$), 5.40 (d, 1H, J=4.5 Hz, C-7H), 6.30 (d, 1H, J=4.5 Hz, C-6H), 6.9-7.8 (m, 16H)]. Treatment of a methylene chloride solution of $\underline{8}$ with HCl gas at 0° gave quantitatively the α -chloro isomer $\underline{5a}$ by a stereospecific ring opening. ⁴ Reduction of aldehyde $\underline{5}$ with sodium cyanoborohydride ⁵ in THF-acetic acid produced the alcohol 2 in over 90% yield [I.R. (KBr) 1785, 1700 and 1685 cm ⁻¹; NMR (CDCl $_3$) of $\underline{9b}$ δ 2.35 (s, 3H, methyl), 4.21 (d, 1H, J=12Hz, CH $_2$ OH) 4.40 (d, 1H, J=12Hz, CH $_2$ OH), 4.51 (s, 2H, Φ OCH $_2$),

5.62 (q, 1H, J=3.9, 9.5Hz, C-7H), 5.90 (d, 1H, J=3.9Hz, C-6H), 6.7-7.5 (m, 16H)]. Ring closure of 9a or a mixture of 9a and 9b with AgBF4-Ag₂0 (1:1) in methylene chloride a gave the 6-epi-1-oxacephem 10b in 87% yield after silica gel chromatography [I.R. (KBr) 1785, 1735 and 1685 cm⁻¹; NMR (CDCl₃) 8 1.95 (s, 3H, methyl), 4.42 (broad s, 2H, C-2H), 4.65 (s, 2H, ϕ OCH₂), 4.80 (q, 1H, J=0.8, 8.7Hz, C-7H), 5.20 (d, 1H, J=0.8Hz, C-6H), 6.9-7.8 (m, 17H)]. No trace of the cis isomer 10a was detected in the reaction products by examination with 100 MHz nmr. This indicates that the intermediate ion 116 generated by Ag⁺ cyclizes only from the less sterically hindered α -side and produces exclusively the trans isomer.

Hydrogenation of $\underline{10b}$ over Pd/C in dioxane-water gave the free acid $\underline{12b}$, mp 139-141° [I.R. (KBr) 1785, 1720 and 1670 cm⁻¹], which displayed significantly diminished antibacterial activity when compared with $\underline{1}$ (R = Φ OCH₂).

$$\begin{array}{c} \text{H} \\ \text{HO} \\ \text{CONH} \\ \text{H} \\ \text{HO} \\ \text{CO}_2\text{CH}\phi_2 \\ \\ \text{10b} \\ \text{R} = \text{CH}\phi_2 \quad (\alpha \text{ 6H}) \\ \\ \text{12a} \\ \text{R} = \text{H} \quad (\alpha \text{ 6H}) \\ \\ \text{12b} \\ \text{R} = \text{H} \quad (\beta \text{ 6H}) \\ \\ \end{array}$$

REFERENCES:

- 1. a. L. D. Cama and B. G. Christensen, J. Amer. Chem. Soc., 96, 7582 (1974).
 - b. S. Wolfe, J. B. Ducep, R. C. Tin and S. L. Lee, Can J. Chem., 52, 3996 (1974).
 - c. Raymond A. Firestone, J. L. Fahey, N. S. Maciejewicz, C. S. Patel, and B. G. Christensen, J. Med. Chem., 20, 551 (1977).
- 2. D. O. Spry, Tetrahedron Letters, 3717 (1972).
- 3. S. Kukolja, J. Amer. Chem. Soc., 93, 6267 (1971).
- 4. a. D. F. Cobett and R. J. Stoodley, <u>J. Chem. Soc.</u>, Perkin I 185 (1974).
 - b. <u>Ibid.</u>, 432 (1975).
- 5. R. F. Borch, M. D. Bernstein and H. D. Durst, <u>J. Amer. Chem. Soc.</u>, <u>93</u>, 2897 (1971).
- 6. Azetinium ions, analogous to 11, have been proposed in many instances.
 - a. S. Kukolja, J. Amer. Chem. Soc., 94, 6270, 7590 (1972).
 - b. S. Wolfe and M. P. Goeldner, Tetrahedron Letters, 5131 (1973).
 - c. Also see references 1a, 3, and 4b.